

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # BenchTool
This is a framework to automate and standardize application compilation, benchmarking and result collection on large scale HPC systems.
There are several application profiles included with benchtool for debugging and testing:

Applications | Synthetic Benchmarks |

----------------------------	————————–
AMBER 20	HPL
LAMMPS 3Mar20	HPCG
MILC 7.8.1	STREAM
OpenFOAM v2012	GPCNET
Quantum Espresso 6.5	
SWIFTsim 0.9.0	
WRF 4.2	
SpecFEM3D Globe 7.0.2	

These application profiles have been created with the expectation that corresponding source code and datasets are available in the local repository directory.
New applications are continuously being added.

Getting Started

The following steps will walk you through the basic usage of benchtool and should hopefully produce a small LAMMPS LJ-melt benchmark. Tested on Stampede2 and Frontera systems at TACC.

Initial setup

This setup guide will walk you through installing the benchtool Python module. This guide uses a virtual environment, though a system wide installation can be done with minimal change where appropriate.

1 Create virtual environment
`
virtualenv -p python3 ~/benchenv
source ~/benchenv/bin/activate
`

2 Download and install BenchTool package:
`
git clone https://github.com/TACC/benchtool.git
cd benchtool
git checkout origin/dev
python3 setup.py install
`

At this point the Python package is installed, now you will need to run the tool’s installation process for a specific user, which will copy configuration files and setup directory structures for your user. The default paths for this install process are stored in the file src/data/install.ini inside the package directory. You can pass a file to use to the install process which will overwrite values in this default file with the –settings argument.

3 Install BenchTool
`
benchtool --install [--settings FILE]
`
After the installation is complete, project files have been installed for your user and the BenchTool module has been added to your ~/.bashrc file. Now refresh your environment and run the validation process which is required ensure that the system, environment and directory structure are correctly configured. This validation may fail if the SSH key required to access the benchmark result database was not defined in the install.ini file. Copy this key into the BenchTool project (by default ~/.benchtool/auth/) and rerun the validation step if necessary.
`
source ~/.bashrc
benchtool --validate
`
You should hopefully see that all validation checks report a green ‘PASS’, if so BenchTool is ready to use.

NOTE: some hardware statistics collection functionality provided by BenchTool requires root access, you can either run the permissions script below, or live with the warning.
`
sudo -E $BT_PROJECT/resources/scripts/change_permissions.sh
`

4 Print help & version info:
`
benchtool --help
benchtool --version
`
This walkthrough will use the long format command-line arguments for clarity, however short format will save you time - use the Help output for clarification.

Build an Application

5 List all available applications and benchmarks with:
`
benchtool --avail
`
6 Install the LAMMPS application (LAMMPS builds and runs quickly):
`
benchtool --build lammps
`
7 List applications currently installed:
`
benchtool --listApps
`
NOTE: By default dry_run=True in settings.ini so the LAMMPS build script was created but not submitted to the scheduler. You can now submit your LAMMPS build job manually, or
8 Remove the dry_run build:
`
benchtool --delApp lammps
`
9 Overload the dry_run value in settings.ini and re-build with:
`
benchtool --build lammps --overload dry_run=False
`
10 Check the details and status of your LAMMPS build with:
`
benchtool --queryApp lammps
`
In this example, parameters in $BT_PROJECT/config/build/lammps_3Mar20.cfg were used to populate the build template $BT_PROJECT/templates/build/lammps_3Mar20.template which was submitted to the scheduler.
You can review the populated job script located in the build_prefix directory and named lammps-build.sched. Parameters for the scheduler job, system architecure, compile time optimizations and a module file were automatically generated.
For each application that is build, a ‘build_report’ is generated in order to preserve metadata about the application. This build report is referenced whenever the application is used to run a benchmark, and also when this application is captured to the database. You can manually examine this report in the application build directory.

Run a Benchmark

We can now proceed with running a benchmark with our LAMMPS installation. There is no need to wait for the LAMMPS build job to complete, BenchTool knows to check and create a job dependency as needed. In fact if build_if_missing=True in settings.ini, BenchTool would have automatically detected LAMMPS was not installed and built it without us needing to do the steps above.
The process to run a benchmark is similar to building; a config file is used to populate a template script.
A benchmark run is specified with –bench. The argument may be a single benchmark label, or a benchmark ‘suite’ (i.e collection of benchmarks) defined in settings.ini. Once again you can check for available benchmarks with –avail.
1 Modify $BT_PROJECT/settings.ini
`
dry_run = False
`
2 Run the LAMMPS LJ-melt benchmark with:
`
benchtool --bench ljmelt
`
We changed settings.ini so we don’t need to use the –overload anymore.
It is important to note that BenchTool will use the default scheduler parameters for your system from a file defined in config/system.cfg. You can overload individual parameters using –overload, or use another scheduler config file with the flag –sched [FILENAME].

3 Check the benchmark report with:
`
benchtool --queryResult ljmelt
`
4 Because this LAMMPS LJ-Melt benchmark was the last BenchTool job executed, a useful shortcut to check this report is:
`
benchtool --last
`

In this example, parameters in $BT_PROJECT/config/bench/lammps_ljmelt.cfg were used to populate the template $BT_PROJECT/templates/bench/lammps.template
Much like the build process, a ‘bench_report’ was generated to store metadata associated with this benchmark run. It is stored in the benchmark result direcotry and will be used in the next step to capture the result to the database.

Capture Benchmark Result

A benchmark result exists in four states, during scheduler queueing and execution it is considered in running state, upon completion it will remain on the local system in a pending state, until it is captured it to the database when its state changes to captured or failed.
1 We can check on the status of all benchmark runs with:
`
benchtool --listResults
`
2 Once your LAMMPS benchmark result is in the pending state, capture all pending results to the database with:
`
benchtool --capture
`
3 You can now query your result in the database with :
`
benchtool --dbResult
`
4 You can provide search criteria to narrow the results and export these results to a .csv file with:
`
benchtool --dbResult username=$USER:system=$TACC_SYSTEM:submit_time=$(date +"%Y-%m-%d") --export
`
Because your LAMMPS application was recently compiled and not present in the database, it would have been automatically added.

5 Query your application details using the [APPID] from above:
`
benchtool --dbApp [APPID]
`
6 Once you are satisfied the benchmark result and its associated files have been uploaded to the database, you can remove the local copy with:
`
benchtool --delResult captured
`

Web frontend

The captured applications and benchmark results are available through a Django frontend, which is currently running on tacc-stats03 port 8001.

Useful commands

You can print the default values of several important parameters with:
`
benchtool --setup
`

It may be useful to review your previous BenchTool commands, do this with:
`
benchtool --history
`

You can remove tmp, log, csv, and history files by running:
`
benchtool --clean
`

clean will NOT remove your all installed applications, to do that run:
`
benchtool --delApp all
`

Adding a new Application
BenchTool requires two input files to build an application: a config file containing contextualization parameters, and a build template file which will be populated with these parameters and executed.

1. Build config file

	A full detailed list of config file fields are provided at the bottom of this README. A config file is seperated into the following sections:
	
	[general] where information about the application is specified. module_use can be provided to add a nonstandard path to MODULEPATH. By default BenchTool will attempt to match this config file with its corresponsing template file. You can overwrite this default filename by adding the template field to this section.

	[modules] where compiler and mpi are required, while more modules can be specified if needed. Every module must be available on the local machine, if you are cross compiling to another platform (e.g. to frontera-rtx) and require system modules not present on the current node, you can set check_modules=False in settings.ini to bypass this check.

	[config] where variables used in the build template script can be added.

You can define as many additional parameters as needed for your application. Eg: additional modules, build options, etc. All parameters [param] defined here will be used to fill <<<[param]>>> variables of the same name in the template file, thus consistent naming is important.
This file must be located in $BT_PROJECT/config/build, preferably with the naming scheme [label].cfg.

2. Build template file

This template file is used to gerenate a contextualized build script which will executed to compile the application.
Variables are defined with <<<[param]>>> syntax and populated with the variables defined in the config file above.
If a <<<[param]>>> in the build template in not successfully populated and exit_on_missing=True in settings.ini, an expection will be raised.
You are able to make use of the local_repo variable defined in $BT_PROJECT/settings.ini to store and use files locally.
This file must be located in $BT_PROJECT/templates/build, with the naming scheme [label].template

3. Module template file (optional)

You can define your own .lua module template, otherwise a generic one will be created for you.
This file must be located in $BT_PROJECT/templates/build, with the naming scheme [label].module

The application added above would be built with the following command:
`
benchtool --build [code]
`
Note: BenchTool will attempt to match your application input to a unique config filename. The specificity of the input will depend on the number of similar config files.
It may be helpful to build with dry_run=True initially to confirm the build script was generated as expected, before –removing and rebuilding with dry_run=False to compile.

Adding a new Benchmark

The process of setting up an application benchmark is much the same as the build process; a config file is used to populate a benchmark template.

1. Benchmark config file

	A full detailed list of config file fields is provided below. A config file is seperated into the following sections:
	
	[requirements] where fields are defined to create requirements to an application. More fields produce a finer, more specific application selection criteria.

	[runtime] where job setup parameters are defined.

	[config] where bench script parameters are defined.

	[result] where result collection parameters are defined.

Any additional parameters may be defined in order to setup the benchmark, i.e dataset label, problem size variables etc.
This file must be located in $BT_PROJECT/config/bench, preferably with the naming scheme [label].cfg.

2. Benchmark template file

As with the build template. The benchmark template file is populated with the parameters defined in the config file above. This file should include setup of the dataset, any required pre-processing or domain decomposition steps if required, and the appropriate mpi_exec command.
You are able to make use of the local_repo variable defined in $BT_PROJECT/settings.ini to copy local files.

This file must be located in $BT_PROJECT/templates/bench, with the naming scheme [label].template.

The benchmark added above would be run with the following command:
`
benchtool --bench [dataset]
`
Note: BenchTool will attempt to match your benchmark input to a unique config filename. The specificity of the input will depend on the number of similar config files.
It may be helpful to build with dry_run=True initially to confirm the build script was generated as expected, before –removing and rebuilding with dry_run=False to launch the build job.

Advanced Features

BenchTool supports a number of more advanced features which may be of use.

Overloading parameters

Useful for changing a setting for a onetime use.
Use benchtool –setup to confirm important default params from $BT_PROJECT/settings.ini
You can overload params from settings.ini and params from your build/bench config file.
Accepts colon delimited lists.
Exception will be raised if overload param does not match existing key in settings.ini or config file.

Example 1: overload dry_run and build locally rather than via sched:
`
benchtool --build lammps --overload dry_run=False build_mode=local
`

Example 2: run LAMMPS benchmark with modified nodes, ranks and threads:
`
bench --bench ljmelt --overload nodes=16 ranks_per_node=8 threads=6
`

Input list support

Comma delimited lists of nodes, ranks and threads are supported which can be useful for automating scaling and optimization investigations.
These lists can be specified in the config file, or via the overload feature detailed above.
A list of nodes will be iterated over, and for each, the list of threads and ranks will both be iterated over.
If the single thread and multiple ranks are specified, the same thread value will be used for all ranks, and vice versa. If ranks and threads and both larger than a single value but not equal length, an exception will be raised.

Example 1: Run LAMMPS on 4, 8 and 16 nodes, first using 4 ranks per node with 8 threads each, and then 8 ranks per node using 4 threads each:
`
benchtool --bench ljmelt --overload nodes=4,8,16 ranks_per_node=4,8 threads=8,4
`
From this example, the resulting set of runs would look like:
`
Nodes= 4, ranks= 4, threads= 8
Nodes= 4, ranks= 8, threads= 4
Nodes= 8, ranks= 4, threads= 8
Nodes= 8, ranks= 8, threads= 4
Nodes= 16, ranks= 4, threads= 8
Nodes= 16, ranks= 8, threads= 4
`

Local build and bench modes

Allows you to run the generated scripts in a shell on the local machine rather than via the scheduler.
Useful for evaluating hardware which is not integrated into the scheduler.

In settings.ini build_mode and bench_mode are responsible for selecting this feature. Values sched or local are accepted, or an exception will be raised.
You can opt to build locally and run via the scheduler, or vice a versa.

Benchmarks with no application dependency

Some benchmarks such as synthetics are microbenchmarks do require an application be compiled and module created.
You are able to create a benchmark without any dependency to an application.
This is done by not specifying any values in the [requirements] section of the benchmark config file.

Inputs & settings format

Command line arguments

Argument | Description |

---	—————————————————————
–help	Print usage info.
–validate	Confirm the installation is correctly configured.
–clean	Remove logs and other temp files left after an execption.
–avail	Print the available application and benchmark profiles.
–build [LABEL]	Compile an available application.
–listApps	Print a list of currently installed applications.
–queryApp [LABEL]	Print compilation information for an installed app.
–delApp [LABEL]	Remove application installation matching inpout.
–bench [LABEL]	Run a benchmark.
–sched [LABEL]	Use with ‘–build’ or ‘–bench’ to specify a custom scheduler config file instead of the system default.
–listResults [all/running/pending/captured/failed]	List all benchmark results in requested state.
–queryResult [LABEL]	Print config and result of a benchmark run.
–capture	Validate and capture all pending results to the database.
–dbResult [all/LIST]	Display either all results from DB or results matching colon delimited search list, eg “username=mcawood:code=lammps”.
–dbApp [APPID]	Display application details
–delResult [all/captured/failed/LABEL]	Remove local benchmark results matching input criteria.
–overload [LIST]	Replace options in settings.ini or any config file, acceptes a colon delimited list.

Global settings
Global settings are defined in the file settings.ini

Label | Default | Description |

-------------------	——————————-	---
[paths]		-
install_dir		Populated by installer
build_dir		Populated by installer
bench_dir		Populated by installer
[common]		-
dry_run	True	Generates job script but does not submit it, useful for testing
debug	True	Prints additional nonessential messages
timeout	5	Delay in seconds after warning and before file deletion event
sl	/	Filesystem separator
system_env	$TACC_SYSTEM	Environment variable contained system label (eg: stampede2)
sched_mpi	ibrun	MPI launcher to use in job script
local_mpi	mpirun	MPI launcher to use on local machine
tree_depth	6	Determines depth of app installation tree
topdir_env_var	$BT_PROJECT	BenchTool’s working directory environment variable (exported in from sourceme)
log_dir	./log	Log file directory
script_basedir	./scripts	Result validation and system check script directory
ssh_key_dir	./auth	Directory containing SSH keys for server access
mpi_blacklist	login,staff	Hostnames containing these strings are forbidden from executing MPI code
[config]		-
config_basedir	./config	Top directory for config files
build_cfg_dir	build	Build config file subdirectory
bench_cfg_dir	bench	Benchmark config file subdirectory
sched_cfg_dir	sched	Scheduler config file subdirectory
system_cfg_file	system.cfg	File containing system default architecture and core count
arch_cfg_file	architecture_defaults.cfg	File containing default compile optimization flags
compile_cfg_file	compiler.cfg	File containing compiler environment variables
[templates]		-
exit_on_missing	True	Exit if template is not fully populates (missing parameters found)
template_basedir	./templates	Top directory for template files
build_tmpl_dir	build	Build template file subdirectory
sched_tmpl_dir	sched	Scheduler template file subdirectory
bench_tmpl_dir	bench	Benchmark template file subdirectory
compile_tmpl_file	compiler.template	Template for setting environment variables
[builder]		-
app_env_var	$BT_APPS	Application directory environment variable
overwrite	False	If existing installation is found in build path, replace it
build_mode	sched	Accepts ‘sched’ or ‘local’, applications compiled via sched job or local shell
build_basedir	./build	Top directory for application installation tree
build_subdir	build	Application subdirectory for build files
install_subdir	install	Application subdirectory for installation (–prefix)
build_log_file	build	Label for build log
build_report_file	build_report.txt	Application build report file name
max_build_jobs	5	Maximum number of concurrent running build jobs allowed in the scheduler
[bencher]		
result_env_var	$BT_RESULTS	Application directory environment variable
bench_mode	sched	Accepts ‘sched’ or ‘local’, benchmarks run via sched job or local shell
build_if_missing	True	If application needed for benchmark is not currently installed, install it
local_repo	/scratch/06280/mcawood/local_repo	Directory containing benchmark datasets
bench_basedir	./results	Top directory containing bechmark runs
bench_log_file	bench	Label for run log
bench_report_file	bench_report.txt	Benchmark report file
output_file	output.log	File name for benchmark stdout
[results]		
move_failed_result	True	Move failed results to subdir
result_scripts_dir	results	Subdirectory inside [script_basedir] containing result validation scripts
results_log_file	capture	Label for capture log
pending_subdir	pending	Subdirectory for pending results
captured_subdir	captured	Subdirectory for captured results
failed_subdir	failed	Subdirectory for failed results
[database]		
db_host	tacc-stats03.tacc.utexas.edu	Database host address
db_name	bench_db	Database name
db_user	postgres	Database user
db_passwd	postgres	Datanase user password
result_table	results_result	Postgres results table name
app_table	results_application	Django application table name
file_copy_handler	scp	File transfer method, only scp working currently
ssh_user	mcawood	Username for SSH access to database host
ssh_key	id_rsa	SSH key filename (stored in ./auth)
django_static_dir	/home/mcawood/benchdb/static	Directory for Django static directory (destination for file copies)
[system]		-
system_scripts_dir	system	Subdirectory in which hardware info collection tools are located
system_utils_dir	hw_utils	
[suites]		
[Suite label]	[list of apps/benchmarks]	Several example included for

Application config files
These config files contain parameters used to populate the application build template file, config files are broken in sections corresponding to general settings, system modules and configuration parameters.

Label | Required? | Description |

-------------------	———–	--
[general]		
code	Y	Application identifier.
version	Y	Application version label, accepts x.x, x-x, or strings like ‘stable’.
system	N	TACC system identifier, if left blank will use $TACC_SYSTEM.
build_prefix	N	Custom build (outside of default tree).
build_template	N	Overwrite default build template file.
[modules]		NOTE: user may add as many custom fields to this section as needed.
compiler	Y	Module name of compile, eg: ‘intel/18.0.2’ or just ‘intel’ for LMod default.
mpi	Y	Module name of MPI, eg: ‘impi/18.0.2’ or just ‘impi’ for LMod default.
[config]		NOTE: user may add as many fields to this section as needed.
arch	N	Generates architecture specific optimization flags. If left blank will use system default, set to ‘system’ to combine with ‘opt_flags’ below
opt_flags	N	Used to add additional optimization flags, eg: ‘-g -ipo’ etc. If arch is not set, this will be only optimization flags used.
build_label	N	Custom build label, replaces arch default eg: skylake-xeon. Required if ‘opt_flags’ is set and ‘arch’ is not
bin_dir	N	Set bin dir suffix to add executable to PATH, eg: bin, run etc.
exe	Y	Name of application executable, used to check compilation was successful.
collect_hw_stats	N	Runs the hardware stats collection tool after build.

Benchmark config file
These config files contain parameters used to populate the benchmark template script. The file structure is:

Label | Required? | Description |

-----------------------	————	--	
[requirements]		NOTE: user may add as many fields to this section as needed.	
code	N	This benchmark requires an installed application matching code=””	
version	N	This benchmark requires an installed application matching version=””	
label	N	This benchmark requires an installed application matching label=””	
[runtime]			
nodes	Y	Number of nodes on which to run, accepts comma-delimited list.	
ranks_per_node	N	MPI ranks per node.	
threads	Y	Threads per MPI rank.	
max_running_jobs	N	Sets maximum number of concurrent running scheduler jobs.	
hostlist	Depends	Either hostlist or hostfile required if benchmarking on local system (no sched).	
hostfile	Depends		
[config]		NOTE: user may add as many fields to this section as needed.	
label	Depends	Required if this benchmark has no application dependency.	
exe	Y	Application executable.	
dataset	Y	Benchmark dataset label.	
collect_hw_stats	N	Run hardware info collection after benchmark.	
output_file	N	File to redirect stdout, if empty will use stdout for sched jobs, or ‘output_file’ from settings.ini for local job.	
[result]			
description	N	Result explanation/description.	
method	Y	Results extraction method. Currently ‘expr’ or ‘script’ modes supported.	
expr	Depends	Required if ‘method=expr’. Expression for result extraction (Eg: “grep ‘Performance’ <file>	cut -d ‘ ‘ -f 2”)”
script	Depends	Required if ‘method=script’. Filename of script for result extraction.	
unit	Y	Result units.	

Directory structure

Directory | Purpse |

-------------------	———————————————————–
$BT_PROJECT/auth	SSH keys.
$BT_APPS/build	Application build basedir.
$BT_PROJECT/config	config files containing template parameters.
$BT_PROJECT/dev	Contains unit tests etc.
$BT_PROJECT/doc	Contains Sphinx generated documentation. WIP
$BT_PROJECT/log	Build, bench and catpure log files.
$BT_PROJECT/resources	Contains useful content including modulefiles, hardware collection and result validation scripts.
$BT_RESULTS/results	Benchmark result basedir.
$BT_PROJECT/templates	job template files

 # bench-framework
This is a framework to automate and standardize application compilation, benchmarking and result collection on large scale HPC systems.
Currently there are the following application profiles available for debugging and testing:

	AMBER 20

	LAMMPS 3Mar20

	OpenFOAM v2006

	Quantum Espresso 6.5

	SWIFTsim 0.8.5

	WRF 4.2

	MILC 7.8.1

	As well as these synthetic benchmarks:
	
	HPL

	HPCG

	STREAM

In addition there are new applications being added.

Getting Started

The following steps will walk you through the basic usage of benchtool and should hopefully produce a small LAMMPS LJ-melt benchmark. Tested on Stampede2 and Frontera.

Initial setup

1 Download, setup enivronment and validate benchtool:

`
git clone https://github.com/TACC/benchtool.git
`
NOTE: some of the hardware info collection scripts require root priviledges, you can either run the permissions script below, or live with the warning.
`
sudo resources/scripts/change_permissions.sh
source sourceme
benchtool --validate
`
This validation step will confirm that the system, environment and directory structure are correctly configured.

2 Print help & version info:
`
benchtool --help
benchtool --version
`

Build an Application

3 List all available applications and benchmarks with:
`
benchtool --avail
`
4 Install the LAMMPS application (LAMMPS builds and runs quickly):
`
benchtool --build lammps
`
5 List applications currently installed:
`
benchtool --listApps
`
NOTE: By default dry_run=True in settings.ini so the LAMMPS build script was created but not submitted to the scheduler. You can now submit your LAMMPS build job manually, or
6 Remove the dry_run build:
`
benchtool --delApp lammps
`
7 Overload the dry_run value in settings.ini and re-build with:
`
benchtool --install lammps --overload dry_run=False
`
8 Check the details and status of your LAMMPS build with:
`
benchtool --queryApp lammps
`

In this example, parameters in config/build/lammps_3Mar20.cfg were used to populate the build template templates/build/lammps_3Mar20.template which was submitted to the scheduler.
You can review the populated job script located in the build_prefix directory and named lammps-build.sched. Parameters for the scheduler job, system architecure, compile time optimizations and a module file were automatically generated.
For each application that is build, a ‘build_report’ is generated in order to preserve metadata about the application. This build report is referenced whenever the application is used to run a benchmark, and also when this application is captured to the database. You can manually examine this report in the application build directory.

Run a Benchmark

We can now proceed with running a benchmark with our LAMMPS installation. There is no need to wait for the LAMMPS build job to complete, benchtool knows to check and create a job dependency as needed. In fact if build_if_missing=True in settings.ini, benchtool would have automatically detected LAMMPS was not installed and built it without us needing to do the steps above.
The process to run a benchmark is similar to building; a config file is used to populate a template script.
A benchmark run is specified with –bench. The argument may be a single benchmark label, or a benchmark ‘suite’ (i.e collection of benchmarks) defined in settings.ini. Once again you can check for available benchmarks with –avail.
1 Modify settings.ini
`
dry_run = False
`
2 Run the LAMMPS LJ-melt benchmark with:
`
benchtool --bench ljmelt
`
We changed settings.ini so we don’t need to use the –overload anymore.
It is important to note that benchtool will use the default scheduler parameters for your system from a file defined in config/system.cfg. You can overload individual parameters using –overload, or use another scheduler config file with the flag –sched [FILENAME].

3 Check the benchmark report with:
`
benchtool --queryResult ljmelt
`
4 Because this LAMMPS LJ-Melt benchmark was the last benchtool job executed, a useful shortcut to check this report is:
`
benchtool --last
`

In this example, parameters in config/bench/lammps_ljmelt.cfg were used to populate the template templates/bench/lammps.template
Much like the build process, a ‘bench_report’ was generated to store metadata associated with this benchmark run. It is stored in the benchmark result direcotry and will be used in the next step to capture the result to the database.

Capture Benchmark Result

A benchmark result exists in four states, during scheduler queueing and execution it is considered in running state, upon completion it will remain on the local system in a pending state, until it is captured it to the database when its state changes to captured or failed.
1 We can check on the status of all benchmark runs with:
`
benchtool --listResults
`
2 Once your LAMMPS benchmark result is in the pending state, capture all pending results to the database with:
`
benchtool --capture
`
3 You can now query your result in the database with :
`
benchtool --dbResult
`
4 You can provide search criteria to narrow the results and export these results to a .csv file with:
`
benchtool --dbResult username=$USER:system=$TACC_SYSTEM:submit_time=$(date +"%Y-%m-%d") --export
`
Because your LAMMPS application was recently compiled and not present in the database, it would have been automatically added.

5 Query your application details using the [APPID] from above:
`
benchtool --dbApp [APPID]
`
6 Once you are satisfied the benchmark result and its associated files have been uploaded to the database, you can remove the local copy with:
`
benchtool --delResult captured
`

Web frontend

The captured applications and benchmark results are available through a Django frontend, which is currently running on tacc-stats03 port 8001.

Useful commands

You can print the default values of several important parameters with:
`
benchtool --setup
`

It may be useful to review your previous benchtool commands, do this with:
`
benchtool --history
`

You can remove tmp, log, csv, and history files by running:
`
benchtool --clean
`

clean will NOT remove your all installed applications, to do that run:
`
benchtool --delApp all
`

Adding a new Application
benchtool requires two input files to build an application: a config file containing contextualization parameters, and a build template file which will be populated with these parameters and executed.

1. Build config file

	A full detailed list of config file fields are provided at the bottom of this README. A config file is seperated into the following sections:
	
	[general] where information about the application is specified. module_use can be provided to add a nonstandard path to MODULEPATH. By default benchtool will attempt to match this config file with its corresponsing template file. You can overwrite this default filename by adding the template field to this section.

	[modules] where compiler and mpi are required, while more modules can be specified if needed. Every module must be available on the local machine, if you are cross compiling to another platform (e.g. to frontera-rtx) and require system modules not present on the current node, you can set check_modules=False in settings.ini to bypass this check.

	[config] where variables used in the build template script can be added.

You can define as many additional parameters as needed for your application. Eg: additional modules, build options, etc. All parameters [param] defined here will be used to fill <<<[param]>>> variables of the same name in the template file, thus consistent naming is important.
This file must be located in config/build, preferably with the naming scheme [code]_[version].cfg.

2. Build template file

This template file is used to gerenate a contextualized build script which will executed to compile the application.
Variables are defined with <<<[param]>>> syntax and populated with the variables defined in the config file above.
If a <<<[param]>>> in the build template in not successfully populated and exit_on_missing=True in settings.ini, an expection will be raised.
You are able to make use of the local_repo variable defined in settings.ini to store and use files locally.
This file must be located in templates/build, with the naming scheme [code]_[version].template

3. Module template file (optional)

You can define your own .lua module template, otherwise a generic one will be created for you.
This file must be located in templates/build, with the naming scheme [code]_[version].module

The application added above would be built with the following command:
`
benchtool --build [code]_[version]
`
Note: benchtool will attempt to match your application input to a unique config filename. The specificity of the input will depend on the number of similar config files.
It may be helpful to build with dry_run=True initially to confirm the build script was generated as expected, before –removing and rebuilding with dry_run=False to compile.

Adding a new Benchmark

The process of setting up an application benchmark is much the same as the build process; a config file is used to populate a benchmark template.

1. Benchmark config file

	A full detailed list of config file fields is provided below. A config file is seperated into the following sections:
	
	[requirements] where fields are defined to create requirements to an application. More fields produce a finer, more specific application selection criteria.

	[runtime] where job setup parameters are defined.

	[config] where bench script parameters are defined.

	[result] where result collection parameters are defined.

Any additional parameters may be defined in order to setup the benchmark, i.e dataset label, problem size variables etc.
This file must be located in config/bench, preferably with the naming scheme [code]_[bench].cfg.

2. Benchmark template file

As with the build template. The benchmark template file is populated with the parameters defined in the config file above. This file should include setup of the dataset, any required pre-processing or domain decomposition steps if required, and the appropriate mpi_exec command.
You are able to make use of the local_repo variable defined in settings.ini to copy local files.

This file must be located in templates/bench, with the naming scheme [code]_[bench].template.

The benchmark added above would be run with the following command:
`
benchtool --bench [code]_[bench]
`
Note: benchtool will attempt to match your benchmark input to a unique config filename. The specificity of the input will depend on the number of similar config files.
It may be helpful to build with dry_run=True initially to confirm the build script was generated as expected, before –removing and rebuilding with dry_run=False to launch the build job.

Advanced Features

Benchtool supports a number of more advanced features which may be of use.

Overloading parameters

Useful for changing a setting for a onetime use.
Use benchtool –defaults to confirm important default params from settings.ini
You can overload params from settings.ini and params from your build/bench config file.
Accepts colon delimited lists.
Exception will be raised if overload param does not match existing key in settings.ini or config file.

Example 1: overload dry_run and build locally rather than via sched:
`
benchtool --build lammps --overload dry_run=False:build_mode=local
`

Example 2: run LAMMPS benchmark with modified nodes, ranks and threads:
`
bench --bench ljmelt --overload nodes=16:ranks_per_node=8:threads=6
`

Input list support

Comma delimited lists of nodes, ranks and threads are supported which can be useful for automating scaling and optimization investigations.
These lists can be specified in the config file, or via the overload feature detailed above.
A list of nodes will be iterated over, and for each, the list of threads and ranks will both be iterated over.
If the single thread and multiple ranks are specified, the same thread value will be used for all ranks, and vice versa. If ranks and threads and both larger than a single value but not equal length, an exception will be raised.

Example 1: Run LAMMPS on 4, 8 and 16 nodes, first using 4 ranks per node with 8 threads each, and then 8 ranks per node using 4 threads each:
`
benchtool --bench ljmelt --overload nodes=4,8,16:ranks_per_node=4,8:threads=8,4
`
From this example, the resulting set of runs would look like:
`
Nodes= 4, ranks= 4, threads= 8
Nodes= 4, ranks= 8, threads= 4
Nodes= 8, ranks= 4, threads= 8
Nodes= 8, ranks= 8, threads= 4
Nodes= 16, ranks= 4, threads= 8
Nodes= 16, ranks= 8, threads= 4
`

Local build and bench modes

Allows you to run the generated scripts in a shell on the local machine rather than via the scheduler.
Useful for evaluating hardware which is not integrated into the scheduler.

In settings.ini build_mode and bench_mode are responsible for selecting this feature. Values sched or local are accepted, or an exception will be raised.
You can opt to build locally and run via the scheduler, or vice a versa.

Benchmarks with no application dependency

Some benchmarks such as synthetics are microbenchmarks do require an application be compiled and module created.
You are able to create a benchmark without any dependency to an application.
This is done by not specifying any values in the [requirements] section of the benchmark config file.

Inputs & settings format

Command line arguments

Argument | Description |

---	—————————————————————
–help	Print usage info.
–validate	Confirm the installation is correctly configured.
–clean	Remove logs and other temp files left after an execption.
–avail	Print the available application and benchmark profiles.
–build [LABEL]	Compile an available application.
–listApps	Print a list of currently installed applications.
–queryApp [LABEL]	Print compilation information for an installed app.
–delApp [LABEL]	Remove application installation matching inpout.
–bench [LABEL]	Run a benchmark.
–sched [LABEL]	Use with ‘–build’ or ‘–bench’ to specify a custom scheduler config file instead of the system default.
–listResults [all/running/pending/captured/failed]	List all benchmark results in requested state.
–queryResult [LABEL]	Print config and result of a benchmark run.
–capture	Validate and capture all pending results to the database.
–dbResult [all/LIST]	Display either all results from DB or results matching colon delimited search list, eg “username=mcawood:code=lammps”.
–dbApp [APPID]	Display application details
–delResult [all/captured/failed/LABEL]	Remove local benchmark results matching input criteria.
–overload [LIST]	Replace options in settings.ini or any config file, acceptes a colon delimited list.

Global settings
Global settings are defined in the file settings.ini

Label | Default | Description |

-------------------	——————————-	---
[common]		-
dry_run	True	Generates job script but does not submit it, useful for testing
timeout	5	Delay in seconds after warning and before file deletion event
sl	/	Filesystem separator.
system_env	$TACC_SYSTEM	Environment variable contained system label (eg: stampede2)
sched_mpi	ibrun	MPI launcher to use in job script
local_mpi	mpirun	MPI launcher to use on local machine
tree_depth	6	Determines depth of app installation tree.
topdir_env_var	$BENCHTOOL	benchtool’s working directory environment variable (exported in from sourceme).
log_dir	./log	Log file directory.
script_basedir	./scripts	Result validation and system check script directory.
ssh_key_dir	./auth	Directory containing SSH keys for server access.
mpi_blacklist	login,staff	Hostnames containing these strings are forbidden from executing MPI code.
[config]		-
config_basedir	./config	Top directory for config files.
build_cfg_dir	build	Build config file subdirectory.
bench_cfg_dir	bench	Benchmark config file subdirectory.
sched_cfg_dir	sched	Scheduler config file subdirectory.
system_cfg_file	system.cfg	File containing system default architecture and core count.
arch_cfg_file	architecture_defaults.cfg	File containing default compile optimization flags.
compile_cfg_file	compiler.cfg	File containing compiler environment variables.
[templates]		-
exit_on_missing	True	Exit if template is not fully populates (missing parameters found).
template_basedir	./templates	Top directory for template files.
build_tmpl_dir	build	Build template file subdirectory.
sched_tmpl_dir	sched	Scheduler template file subdirectory.
bench_tmpl_dir	bench	Benchmark template file subdirectory.
compile_tmpl_file	compiler.template	Template for setting environment variables.
[builder]		-
overwrite	False	If existing installation is found in build path, replace it.
build_mode	sched	Accepts ‘sched’ or ‘local’, applications compiled via sched job or local shell.
build_basedir	./build	Top directory for application installation tree.
build_subdir	build	Application subdirectory for build files.
install_subdir	install	Application subdirectory for installation (–prefix).
build_log_file	build	Label for build log.
build_report_file	build_report.txt	Application build report file name.
max_build_jobs	5	Maximum number of concurrent running build jobs allowed in the scheduler.
[bencher]		
bench_mode	sched	Accepts ‘sched’ or ‘local’, benchmarks run via sched job or local shell.
build_if_missing	True	If application needed for benchmark is not currently installed, install it.
local_repo	/scratch/06280/mcawood/local_repo	Directory containing benchmark datasets.
bench_basedir	./results	Top directory containing bechmark runs.
bench_log_file	bench	Label for run log.
bench_report_file	bench_report.txt	Benchmark report file.
output_file	output.log	File name for benchmark stdout.
[suites]		
test_suite	ljmelt,ausurf	Exmaple benchmark suite containing a LAMMPS and QE problem set.
[results]		
result_scripts_dir	results	Subdirectory inside [script_basedir] containing result validation scripts.
results_log_file	capture	Label for capture log.
[database]		
db_host	tacc-stats03.tacc.utexas.edu	Database host address.
db_name	bench_db	Database name.
db_user	postgres	Database user.
db_passwd	postgres	Datanase user password.
result_table	results_result	Postgres results table name.
app_table	results_application	Django application table name.
file_copy_handler	scp	File transfer method, only scp working currently.
ssh_user	mcawood	Username for SSH access to database host.
ssh_key	id_rsa	SSH key filename (stored in ./auth)
django_static_dir	/home/mcawood/benchdb/static	Directory for Django static directory (destination for file copies).
[system]		-
system_scripts_dir	system	Subdirectory in which hardware info collection tools are located.
system_utils_dir	hw_utils	

Application config files
These config files contain parameters used to populate the application build template file, config files are broken in sections corresponding to general settings, system modules and configuration parameters.

Label | Required? | Description |

-------------------	———–	--
[general]		
code	Y	Application identifier.
version	Y	Application version label, accepts x.x, x-x, or strings like ‘stable’.
system	N	TACC system identifier, if left blank will use $TACC_SYSTEM.
build_prefix	N	Custom build (outside of default tree).
build_template	N	Overwrite default build template file.
[modules]		NOTE: user may add as many custom fields to this section as needed.
compiler	Y	Module name of compile, eg: ‘intel/18.0.2’ or just ‘intel’ for LMod default.
mpi	Y	Module name of MPI, eg: ‘impi/18.0.2’ or just ‘impi’ for LMod default.
[config]		NOTE: user may add as many fields to this section as needed.
arch	N	Generates architecture specific optimization flags. If left blank will use system default, set to ‘system’ to combine with ‘opt_flags’ below
opt_flags	N	Used to add additional optimization flags, eg: ‘-g -ipo’ etc. If arch is not set, this will be only optimization flags used.
build_label	N	Custom build label, replaces arch default eg: skylake-xeon. Required if ‘opt_flags’ is set and ‘arch’ is not
bin_dir	N	Set bin dir suffix to add executable to PATH, eg: bin, run etc.
exe	Y	Name of application executable, used to check compilation was successful.
collect_hw_stats	N	Runs the hardware stats collection tool after build.

Benchmark config file
These config files contain parameters used to populate the benchmark template script. The file structure is:

Label | Required? | Description |

-----------------------	————	--	
[requirements]		NOTE: user may add as many fields to this section as needed.	
code	N	This benchmark requires an installed application matching code=””	
version	N	This benchmark requires an installed application matching version=””	
label	N	This benchmark requires an installed application matching label=””	
[runtime]			
nodes	Y	Number of nodes on which to run, accepts comma-delimited list.	
ranks_per_node	N	MPI ranks per node.	
threads	Y	Threads per MPI rank.	
max_running_jobs	N	Sets maximum number of concurrent running scheduler jobs.	
hostlist	Depends	Either hostlist or hostfile required if benchmarking on local system (no sched).	
hostfile	Depends		
[config]		NOTE: user may add as many fields to this section as needed.	
label	Depends	Required if this benchmark has no application dependency.	
exe	Y	Application executable.	
dataset	Y	Benchmark dataset label.	
collect_hw_stats	N	Run hardware info collection after benchmark.	
output_file	N	File to redirect stdout, if empty will use stdout for sched jobs, or ‘output_file’ from settings.ini for local job.	
[result]			
description	N	Result explanation/description.	
method	Y	Results extraction method. Currently ‘expr’ or ‘script’ modes supported.	
expr	Depends	Required if ‘method=expr’. Expression for result extraction (Eg: “grep ‘Performance’ <file>	cut -d ‘ ‘ -f 2”)”
script	Depends	Required if ‘method=script’. Filename of script for result extraction.	
unit	Y	Result units.	

Directory structure

Directory | Purpse |

-------------------	———————————————————–
./auth	SSH keys.
./build	Application build basedir.
./config	config files containing template parameters.
./dev	Contains unit tests etc.
./doc	Contains Sphinx generated documentation. WIP
./log	Build, bench and catpure log files.
./python	contains Python files and hardware collection bash script.
./resources	Contains useful content including modulefiles, hardware collection and result validation scripts.
./results	Benchmark result basedir.
./templates	job template files

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/plus.png

_static/file.png

_static/minus.png

