BenchPRO

Release 1.3

Matthew Cawood

Jun 21, 2023

CONTENTS

OVERVIEW 3
BenchPRO Basics 5
2.1 Quick Start L L e e e e e e e e 5
22 NewUserGuide e e e e e 6
2.3 Integrating your Application e 9
2.4 Integrating your Benchmark L L o 14
2.5 Available teSt CaSEs e e e e e e e e e 17
Installing BenchPRO 19
3.1 Database Installation e e e e 19
3.2 SiteInstallation L e e e e e e 19
Advanced Topics 21
4.1 Useful Features 0 o e e e e e e e e 21
4.2 File Format Reference e e 23
4.3 Database StruCtures v v i v i e e e e e e e e e e e e e e e 26
BenchPRO URLs 29

BenchPRO, Release 1.3

BenchPRO is a utility that automates, simplifies and standarizes the process of building applications, executing bench-
marks and collecting results on HPC systems.

CONTENTS 1

BenchPRO, Release 1.3

2 CONTENTS

CHAPTER
ONE

OVERVIEW

BenchPRO provides a benchmarking framework that enforces a standardized approach to compiling and running per-
formance benchmarks. The utility automatically collects and stores significant provenance data associated with the
benchmark. The framework also allows performance engineers and domain experts to share their well optimized bench-
mark ‘recipes’ in a reproducible manner. This way, someone with limited background of a workflow or science domain
can run benchmarks through the framework, compare performance to previous results and examine provenance data to
help identify the root cause of any discrepancies. This framework significantly enhances the reproducibility of bench-
marking efforts and reduces the labor required to maintain a benchmark suite. The utility was designed to meet the
following set of goals:

* Automate the process of building applications, running benchmarks and storing result data.

* Structure the framework to promote the standardization of techniques and workflows as a step towards improving
benchmark reproducibility.

¢ Accommodate a number of benchmarking activities like comparative performance assessments, regression test-
ing, and scalability studies.

* Store as much provenance data as possible for future reference.

* Provide an intuitive way of exploring and comparing benchmark results.

BenchPRO, Release 1.3

4 Chapter 1. OVERVIEW

CHAPTER
TWO

BENCHPRO BASICS

2.1 Quick Start

BenchPRO provides a number of example application and benchmark profiles. This Quick Start walks through the
process of building an application, running a benchmark and capturing the result on Frontera.

1. Load the BenchPRO module:

ml use /scratchl/hpc_tools/benchpro/modulefiles
ml benchpro

2. Provide your SLURM allocation using the BPS settings interface:

bps allocation=[your allocation]

3. Build LAMMPS and run the LJ melt simualation with:

bp -b lammps
bp -B ljmelt

4. Two jobs will have started, a LAMMPS complication job, and a LJ melt benchmark job. Check the status of
LAMMPS with:

bp -la
bp -ga lammps

5. Query the state of your benchmark with:

bp -1r
bp -qr [jobid]

6. Once the jobs are complete, capture your result and provenance data to the database:

bp -C

BenchPRO, Release 1.3

2.2 New User Guide

This section describes how to use BenchPRO and its features to automate your benchmarking process. To start fast,
refer to the Quick Start guide.

Note: This guide uses long format input arguments for context, corresponding short format arguments are described
here.

2.2.1 Terminology

Application: a program or set of programs compiled and used to execute benchmark workloads.

Benchmark: a specific workload/simulation/dataset used to produce a figure of merit. Typically has an application
dependency.

Task: an execution instance (via the scheduler or locally on the node) of a compilation or benchmark run.
Template file: a shell script with some variables declared.

Config file: contains a set of variable key-value pairs used to populate the template.

Profile: an application or benchmark available within BenchPRO (i.e. a config & corresponding template file pair)
Overload: replacing a default setting or variable with another one.

2.2.2 Setup BenchPRO

Add BenchPRO to your MODULEPATH and load it:

ml use /scratchl/hpc_tools/benchpro/modulefiles
ml benchpro
ml save (optional)

Run the initial setup, set your SLURM allocation, then print some helpful info:

bp --validate

bps allocation=A-ccsc
bp --version

bp --help

bp --defaults

bp --notices

2.2.3 Compile an Application

This section will walk you through installing the LAMMPS application onto Frontera. This guide should also work on
other example applications and other TACC systems.

First, print all the pre-configured example applications and benchmark profiles currently provided by BenchPRO with

benchpro --avail

Install the LAMMPS application with

benchpro --build lammps

6 Chapter 2. BenchPRO Basics

BenchPRO, Release 1.3

List applications currently installed

benchpro --listApps

You should see that the status of LAMMPS is DRY RUN, this is because dry run mode is enabled by default
(dry_run=True). Therefore BenchPRO generated a LAMMPS compilation script but did not submit the job to the
scheduler. This is useful for testing and troubleshooting a workflow without impacting the system scheduler. You can
obtain more information about your LAMMPS build with:

benchpro --queryApp lammps

Pertenant information is shown here, you can also examine the build script (by default named job.qgsub) located in
the path directory. You can submit this LAMMPS compilation script to the scheduler manually, or

Remove the existing dry_run version of LAMMPS with

benchpro --delApp lammps

Overload the default ‘dry_run’ value and rebuild LAMMPS with

Check the details and status of your LAMMPS compilation again with

benchpro --queryApp lammps

In this example, parameters in $BPS_INC/build/config/frontera/lammps.cfg were used to populate the tem-
plate script $BPS_INC/build/template/lammps.template and produce a job script within a hierarchical directory
structure under $BP_APPS ($SCRATCH/benchpro by default). Parameters for the scheduler, system architecture and
compile-time optimizations, as well as a module file, were all automatically generated. You can load your LAMMPS
module manually with ml frontera/.../lammps. Each application built with BenchPRO has a build report gen-
erated in order to preserve compilation metadata. BenchPRO uses the module file and build report whenever this
application is used to execute a benchmark. You can manually examine LAMMPS’s build report located in the build
directory or by using the --queryApp argument.

2.2.4 Execute a Benchmark

We can now run a benchmark with our LAMMPS installation.

Note: There is no need to wait for the LAMMPS compilation job to complete, BenchPRO is able to create scheduler
job dependencies between tasks as required (i.e. the benchmark job will depend on the successful completion of the
compilation job). In fact, if the setting build_if_missing=True, BenchPRO would detect that LAMMPS was not
available for the current system when attempting to run a benchmark and build it automatically without us doing the
steps above. The process to run a benchmark is similar to application compilation; a configuration file is used to
populate a template script. A benchmark run is specified with --bench / -B. Once again you can check for available
benchmarks with the --avail argument.

Permanently disable the dry run mode with bps dry_run=False so that we don’t have to overload manually overload
the setting on the command line. Refer to the Changing settings section for more information.

Execute the Lennard-Jones benchmark for LAMMPS with

benchpro --bench 1ljmelt

Check the benchmark report with

2.2. New User Guide 7

BenchPRO, Release 1.3

benchpro --queryResult 1ljmelt

As this benchmark was the most recent BenchPRO job executed, you can use a useful shortcut to check this report

benchpro --last

Note: In this example, parameters in $BPS_INC/bench/config/lammps_1jmelt.cfg were used to populate the
template $BPS_INC/bench/template/lammps.template. Much like the application build process, a benchmark
report was generated to store metadata associated with this run. It is stored in the benchmark working directory and
will be used in the next step to capture the result to the database.

2.2.5 Capture Benchmark Result

Note: A BenchPRO result is considered to be in one of four states, ‘pending’, ‘complete’, ‘failed’ or ‘captured’. The
benchmark result will remain on the local system until it has been captured to the database, at which time its state is
updated to captured or failed.

Once the benchmark job has been completed, capture results to the database with:

benchpro --capture

Note: Your unique instance of LAMMPS was recently compiled and is not present in the database, therefore it is also
captured to the database automatically.

Display the status of all benchmark runs with

benchpro --listResults

Query the results database with

benchpro --dbList

You can print an abridged report of your benchmark with

You can also query your LAMMPS application entry in the database using the [APPID] from above

benchpro --dbApp [APPID]

Once you are satisfied the benchmark result is valid and its associated files have been uploaded to the database, you
can remove the local files with

benchpro --delResult captured

8 Chapter 2. BenchPRO Basics

BenchPRO, Release 1.3

2.2.6 Web frontend

The captured applications and benchmark results for the TACC site are available through a web portal at http://benchpro.
tacc.utexas.edu/

2.3 Integrating your Application

BenchPRO requires two input files (collectively refered to as a ‘profile’) to build an application: a configuration file
containing variables, as well as a template script which will be populated with these variables and executed.

2.3.1 Configuration file

The configuration files used for compiling application contains the following fields:

2.3. Integrating your Application 9

http://benchpro.tacc.utexas.edu/
http://benchpro.tacc.utexas.edu/

BenchPRO, Release 1.3

Label Required? Description

[general]

code Y Application identifier.

version Y Application version label, accepts
X.X, X-X, or strings like ‘stable’.

system N TACC system identifier, if left blank
will use $TACC_SYSTEM.

build_prefix N Custom build (outside of default
tree).

template N Overwrite default build template
file.

module_use N Path to be added to MOD-
ULEPATH, for using nonstandard
modules.

sched_cfg N Name of nonstandard scheduler con-
fig file to use.

[modules] NOTE: user may add as many custom fields to this section as needed.

compiler Y Module name of compiler, eg: ‘in-
tel/18.0.2° or just ‘intel’ for default.

mpi Y Module name of MPI, eg:
‘impi/18.0.2” or just ‘impi’ for
default.

[config] NOTE: user may add as many fields to this section as needed.

arch N Generates architecture specific op-
timization flags. If left blank will
use system default, set to ‘system’ to
combine with ‘opt_flags’ below

opt_flags N
Used to add additional
optimization flags, eg: ‘-g -ipo’
etc. If arch is not

set, this will be only optimiza-
tion flags used.

build_label N Custom build label, replaces arch
default eg: skylake-xeon. Required
if ‘opt_flags’ is set and ‘arch’ is not

bin_dir N Path to executable within applica-
tion directory, eg: bin, run etc.

exe Y Name of application executable,
used to check compilation was suc-
cessful.

collect_hw_stats N Runs the hardware stats collection
tool after build.

script_additions N Filename in $BP_HOME/templates,

to be added to build script.

10

Chapter 2. BenchPRO Basics

BenchPRO, Release 1.3

general

Fields for general application info are provide, such as name and version. You can also specify a custom system label,
which limits this application to that specific system (useful for avoiding inadvertantly building the wrong application
on a given system). By default BenchPRO will attempt to match this config file with its corresponsing template file
using the application name. You can overwrite this default template file by adding the template field to this section.

modules

The section compiler and mpi are required, while more modules can be specified if needed. Every module must be
available on the local machine, if you are cross compiling to another platform (e.g. to frontera-rtx) and require system
modules not present on the current node, you can set check_modules=False in user.ini to bypass this check.

module_use can be provided to add a nonstandard path to MODULEPATH

config

where variables used in the build template script can be added.

additionally, you can define as many additional parameters as needed for your application in this section. Eg: configure
flags, build options, etc. All parameters [param] defined here will be used to fill <<<[param]>>> variables of the same
name in the template file, thus consistent naming is important. This file must be located in $BP_HOME/build/config,
preferably with the naming scheme [label].cfg.

files

This section allows the user to have BenchPRO automatically collect input files for the build process. BenchPRO
currently supports local and download operations. If BenchPRO detects that the local or downloaded file is an
archive, it will automatically extract the archive to the correct working directory. BenchPRO will search for local files
in the $BP_REPO directory. The format of the file staging section is:

local = [list],[of],[files]
download = [list],[of], [URLs]

This file staging process occurs in 1 of 2 ways, depending on the state of sync_staging in $BP_HOME/user.ini.
BenchPRO will either synchronously copy/download/extract during the script creation process, alternatively the file
staging will occur during job execution itself. In either case BenchPRO will confirm that the file or URL specified
exists before continuing.

overload

This section allows you to modify default parameters for this specific application. Refer to Changing settings for
additional information.

2.3. Integrating your Application 11

BenchPRO, Release 1.3

2.3.2 Build template file

The build template file is used to gerenate a contextualized build script which will executed to compile the application.
Variables are defined with <<<[param]>>> syntax and populated with the variables defined in the config file above.
If a <<<[param]>>> in the build template is not successfully populated and exit_on_missing=True in $BP_HOME/
user.ini, BenchPRO will abort the build process. You are able to make use of the local_repo variable defined in
$BP_HOME /user.ini to store and use files locally, if you’d rather manage your input files manually. This file must be
located in $BP_HOME /build/templates, preferablly with the naming scheme [code_label].template.

The contextualized build script generated by BenchPRO will have the format:

[scheduler options]

[job level details]

[export environment variables]
[load modules]

[file staging]

[user section]

[executable check]

2.3.3 Module template file (optional)

It is possible to define your own .lua module template and store it in $BP_HOME/build/templates with the naming
scheme [code_label] .module, alternatively BenchPRO will generate a generic module file for you.

The application added above would be built with the following command:

benchpro --build [code_label]

2.3.4 Example Script

Below is an application compilation job script generated by BenchPRO. Everything outside the ‘USER SECTION’ is
produced by BenchPRO, which depends on parameters provided in the configuration file, as well as the current system
and architecture.

#!/bin/bash

#SBATCH -] lammps_build

#SBATCH -0 /scratchl/06280/mcawood/benchpro/apps/frontera/cascadelake/intel22/
—intel22impi/lammps/23Jun2022/default/stdout.log

#SBATCH -e /scratchl/06280/mcawood/benchpro/apps/frontera/cascadelake/intel22/
—intel22impi/lammps/23Jun2022/default/stderr.log

#SBATCH -p small

#SBATCH -t 01:00:00

#SBATCH -N 1

#SBATCH -n 1

#SBATCH -A A-ccsc

echo "START ‘date +"%Y"-%m-%dT%T" “date +"%s" "

echo "JobID: ${SLURM_JOB_ID}"
echo "User: ${USER}"
echo "Hostlist: ${SLURM_NODELIST}"

export working_path=/scratchl/06280/mcawood/benchpro/apps/frontera/cascadelake/intel22/

(continues on next page)

12 Chapter 2. BenchPRO Basics

BenchPRO, Release 1.3

(continued from previous page)

—intel22impi/lammps/23Jun2022/default/build

export

—intel22impi/lammps/23Jun2022/default/install

export local_repo=/scratchl/06280/mcawood/benchpro/repo
export version=23Jun2022

export opt_flags="-02 -xCORE-AVX512 -sox'

export exe=lmp_intel_cpu_intelmpi

export build_label=default

export threads=8

Create application directories
mkdir -p ${install_path}
mkdir -p ${working_path} && cd ${working_path}

[config]

export arch=cascadelake

export opt_flags="'-02 -xCORE-AVX512 -sox'
export build_label=default

export bin_dir=

export exe=lmp_intel_cpu_intelmpi
export collect_stats=True

export script_additions=

export local_repo=/scratchl/06280/mcawood/benchpro/repo
export cores=56

export nodes=1

export stdout=stdout. log

export stderr=stderr.log

[modules]
export compiler=intel/22.1.2
export mpi=intel22/impi/22.1.2

Load modules

ml
ml
ml
ml
ml
ml

use /scratchl/hpc_tools/benchpro-dev/modulefiles
use /scratchl/projects/compilers/modulefiles
benchpro

intel/22.1.2

intel22/impi/22.1.2

Stage Files
stage https://web.corral.tacc.utexas.edu/ASC23006/apps/lammps-23Jun2022.tgz

Compiler variables

export CC=icc

export CXX=icpc
export FC=ifort
export F77=ifort
export F90=ifort

export MPICC=mpicc
export MPICXX=mpicxx
export MPIFORT=mpifort

install_path=/scratchl/06280/mcawood/benchpro/apps/frontera/cascadelake/intel22/

(continues on next page)

2.3. Integrating your Application

13

BenchPRO, Release 1.3

(continued from previous page)

1dd ${install_path}/lmp_intel_cpu_intelmpi
echo "END “date +"%Y"-%m-%dT%T “date +"%s" "

2.4 Integrating your Benchmark

The process of setting up an application benchmark is much the same as the build process; a config file is used to
populate a benchmark template.

2.4.1 Benchmark config file

The configuration files used for running benchmarks contains the following fields:

Label Required? | Description

[require- NOTE: user may add as many fields to this section as needed.

ments]

code N This benchmark requires an installed application matching code="""
version N This benchmark requires an installed application matching version=""
build_label | N This benchmark requires an installed application matching build_label=""
system N This benchmark requires an installed application matching system=""
[runtime]

nodes Y Number of nodes on which to run, accepts comma-delimited list.
ranks_per_nodN MPI ranks per node, accepts comma-delimited list.

threads N Threads per MPI rank, accepts comma-delimited list.

gpus N Number of GPUs to run on, accepts comma-delimited list.

max_running| jbbs

Sets maximum number of concurrent running scheduler jobs.

hostlist Depends Either hostlist or hostfile required if on local system (bench_mode=local).

hostfile Depends

[config] NOTE: user may add as many fields to this section as needed.

dataset Y Benchmark dataset label, used in ID string.

exe N Application executable.

bench_label | N Optional naming string.

col- N Run hardware info collection after benchmark.

lect_hw_stats

script_additigniN File in $BP_HOME/templates to add to benchmark job script.

arch N Required architecture for this benchmark, e.g. cuda.

[result]

description | N Result explanation/description.

output_file | N File to redirect stdout, if empty will use stdout for sched jobs, or ‘output_file’
from user.ini for local job.

method Y Results extraction method. Currently ‘expr’ or ‘script’ modes supported.

expr Depends Required if ‘method=expr’. Expression for result extraction from file (Eg:
“grep ‘Performance’ <file> | cut -d © * -f 2”)”.

script Depends Required if ‘method=script’. Filename of script for result extraction.

unit Y Result units.

14 Chapter 2. BenchPRO Basics

BenchPRO, Release 1.3

requirements

where fields are defined to create requirements to an application. More fields produce a finer, more specific application
selection criteria.

runtime

where job setup parameters are defined.

config

where bench script parameters are defined.

result

where result collection parameters are defined.

Any additional parameters may be defined in order to setup the benchmark, i.e dataset label, problem size variables
etc. This file must be located in $BP_HOME /bench/config, preferably with the naming scheme [label].cfg.

2.4.2 Benchmark template file

As with the build template. The benchmark template file is populated with the parameters defined in the config file
above. This file should include setup of the dataset, any required pre-processing or domain decomposition steps if
required, and the appropriate mpi_exec command. You are able to make use of the local_repo variable defined in
$BP_HOME /user.ini to copy local files.

This file must be located in $BP_HOME/bench/templates, with the naming scheme [label].template.

The benchmark added above would be run with the following command:

benchpro --bench [dataset]

Note: BenchPRO will attempt to match your benchmark input to a unique config filename. The specificity of the input
will depend on the number of similar config files. It may be helpful to build with dry_run=True initially to confirm
the build script was generated as expected, before removing and rebuilding with dry_run=False to launch the build
job.

2.4.3 Example Script
Below is a benchmark job script generated by BenchPRO. Everything outside the ‘USER SECTION’ is produced

by BenchPRO, which depends on parameters provided in the configuration file, as well as the current system and
architecture.

#!/bin/bash

#SBATCH -J ljmelt

#SBATCH -0 /scratchl/06280/mcawood/benchpro/results/pending/mcawood_ljmelt_2023-06-20T14-
—01_001IN_56R_01T_00G/stdout.log

#SBATCH -e /scratchl/06280/mcawood/benchpro/results/pending/mcawood_1jmelt_2023-06-20T14-
—~01_001N_56R_01T_00G/stderr.log

#SBATCH -p small

(continues on next page)

2.4. Integrating your Benchmark 15

BenchPRO, Release 1.3

(continued from previous page)

#SBATCH -t 00:10:00

#SBATCH -N 1

#SBATCH -n 56

#SBATCH -A A-ccsc

echo "START “date +"%Y"-%m-%dT%T “date +"%s" "

echo "JobID: ${SLURM_JOB_ID}"
echo "User: ${USER}"
echo "Hostlist: ${SLURM_NODELIST}"

export working_path=/scratchl/06280/mcawood/benchpro/results/pending/mcawood_
—1jmelt_2023-06-20T14-01_001N_56R_01T_00G

export output_file=stdout.log

export mpi_exec=ibrun

export base_module=/scratchl/06280/mcawood/benchpro/apps/modulefiles

export app_module=frontera/cascadelake/intel22/intel22impi/lammps/23Jun2022/
—default

export threads=1

export ranks=56

export nodes=1

export gpus=0

Create working directory
mkdir -p ${working_path} && cd ${working_path}

export template=lammps

export bench_label=1jmelt

export dataset=1jmelt_4M_per_node_250_steps
export collect_stats=True

export script_additions=

export exe=lmp_intel_ cpu_intelmpi
export arch=

export local_repo=/scratchl/06280/mcawood/benchpro/repo
export stdout=stdout.log

export stderr=stderr.log

export OMP_NUM_THREADS=${threads}

Load Modules

ml use /scratchl/hpc_tools/benchpro-dev/modulefiles
ml use ${base_module}

ml benchpro

ml ${app_module}

ml

[files]
stage https://web.corral.tacc.utexas.edu/ASC23006/datasets/in.1jmelt_4M_per_node_250_
—.steps

(continues on next page)

16 Chapter 2. BenchPRO Basics

BenchPRO, Release 1.3

(continued from previous page)

Provenance data collection script

$BPS_INC/resources/scripts/stats/collect_stats $BP_RESULTS/pending/mcawood_ljmelt_2023-

—06-20T14-01_001N_56R_01T_00G/hw_report

echo "END “date +"%Y'"-%m-%dT%T"

“date +"%s

nyn

2.5 Available test cases

BenchPRO is packaged with a number of included applications and benchmark datasets as examples. Some of these
examples are generalized to work on any RHEL based system while others have been configured specifically for TACC

systems.

Application

Datasets

AMBER20

JAC_NPT_16

JAC_NVE_16

Cellulose_ NPT

Cellulose_NVE

FactorIX_NPT

FactorIX_NVE

STMV_NPT

STMV_NVE

JAC_NPT_20

JAC_NVE_20

GROMACS

gromacs_PEP

gromacs_RIB

LAMMPS

ljmelt

NAMD

namd_apoal

namd_stmv

OpenFOAM

cavity_s

cavity_xl

SimpleBenchMarkLarge

Quantum Espresso

AUSURF112

SPECFEM3D

SWIFTsim

Eagle100

Eagle25

Pmill_large

WRF

new_conus12km

new_conus2.5km

marialkm

MILC

18x18x18x36

In addition several synthetic benchmarks are included:

High Performance Linpack (Intel binary)

High Performance Linpack (CUDA binary)

High Performance Conjugate Gradients

STREAM (x86 & CUDA)

2.5. Available test cases

17

BenchPRO, Release 1.3

18 Chapter 2. BenchPRO Basics

CHAPTER
THREE

INSTALLING BENCHPRO

3.1 Database Installation

3.2 Site Installation

The BenchPRO site package is available from the benchpro-site repo. You should setup the backend result collection
database for your site before proceeding with this installation.

Clone the repo

git clone https://github.com/TACC/benchpro-site
cd benchpro-site

Setup your site specific settings in site. sh.

Run the installation script with

./install [ssh-key]

You will be prompted to provide the database user’s private key generated in the datase installation process. Alterna-
tively you can provide it on the command line as the first argument to the install script.

19

https://github.com/TACC/benchpro-site

BenchPRO, Release 1.3

20

Chapter 3. Installing BenchPRO

CHAPTER
FOUR

ADVANCED TOPICS

4.1 Useful Features

BenchPRO supports a number of additional features which may be of use.

4.1.1 Changing settings
BenchPRO supports several mechanisms for modifying default settings. These settings can control BenchPRO func-
tionality or any parameters associated with your application or benchmarking process.
1. One-Time, via commandline argument
To temporarily modify these parameters for a single run, the -o / --overload argument is available.

Example: enable dry_run mode to test modifications to your benchmark script:

benchpro -b lammps --overload dry_run=True

Example: run LAMMPS benchmark with modified runtime parameters:

benchpro -B 1ljmelt --overload nodes=16 ranks_per_node=8 threads=6

Example: run a collection of benchmarks across a range of hardware, allowing only 1 active task at a time:

vim layout.txt

> nodes = 16,32,64
> ranks_per_node=2
> threads=28

benchpro -B 1ljmelt gromacs_stmv new_conusl2km --overload layout.txt max_running jobs=1

2. Profile specific, via configuration file

The compilation/benchmark config files support parameter overloading, which is applied only to that profile.

[overload]
sync_staging = True
build_mode = local

The above example enforces synchronous file staging as well as execution on the local node via a subshell, rather than
submitted to the scheduler. These overloads are only applied to this specific profile.

3. Permentantly, via user.ini

21

BenchPRO, Release 1.3

You are able to permenantly modify defaults. Do this by adding key-value pairs to $BP_HOME/user.ini. These
parameters will be applied to every task BenchPRO executes. To simplify interacting with this overloads, use the
BenchSET (bps) utility.

Example

bps dry_run=False

4.1.2 Input list support

Comma delimited lists of nodes, ranks and threads are supported which can be useful for automating scaling and
optimization investigations. These lists can be specified in the config file, or via the overload feature detailed above.
A list of nodes will be iterated over, and for each, the list of threads and ranks will both be iterated over. If the single
thread and multiple ranks are specified, the same thread value will be used for all ranks, and vice versa. If ranks and
threads and both larger than a single value but not equal length, an exception will be raised.

Example 1: Run LAMMPS on 4, 8 and 16 nodes, first using 4 ranks per node with 8 threads each, and then 8 ranks per
node using 4 threads each:

benchpro --bench ljmelt --overload nodes=4,8,16 ranks_per_node=4,8 threads=8,4

From this example, the resulting set of runs would look like:

Nodes= 4, ranks= 4, threads= 8
Nodes= 4, ranks= 8, threads= 4
Nodes= 8, ranks= 4, threads= 8
Nodes= 8, ranks= 8, threads= 4
Nodes= 16, ranks= 4, threads= 8
Nodes= 16, ranks= 8, threads= 4

4.1.3 Local build and bench modes
Allows you to run the generated scripts in a shell on the local machine rather than via the scheduler. Useful for evaluating
hardware which is not integrated into the scheduler.

In user.ini build_mode and bench_mode are responsible for selecting this feature. Values sched or local are accepted,
or an exception will be raised. You can opt to build locally and run via the scheduler, or vice a versa.

4.1.4 Benchmarks with no application dependency

Some benchmarks such as synthetics are microbenchmarks do require an application be compiled and module created.
You are able to create a benchmark without any dependency to an application. This is done by not specifying any values
in the [requirements] section of the benchmark config file.

22 Chapter 4. Advanced Topics

BenchPRO, Release 1.3

4.2 File Format Reference

This page provides a reference to the various input and file structures provided by BenchPRO.

4.2.1 Environment Variables

BenchPRO uses environment variables to configure paths and behaviour. Variables with prefix ‘BP_" are user facing
and editable via the setting overload mechanism detailed here. The variables with ‘BPS_’ prefix are used internally
and should not be editted by the user.

Variable Description

$BPS_BIN BenchPRO binaries, added to $PATH

$BPS_COLLECT BenchPRO’s result collection blackhole; used to cache results to be pushed to database.
$BPS_HOME BenchPRO package installation directory.

$BPS_INC Site directory containing examples and configuration files.

$BPS_LOG Log file from package installation.

$BPS_MODULES

Path to BenchPRO’s modulefiles directory.

$BPS_SYSTEM

System label.

$BPS_VERSION

Version information.

$BPS_VERSION_STR

Version information, including build ID hash.

$BP_HOME User file path [Default= $SHOME/benchpro].
$BP_APPS Application install root directory.
$BP_RESULTS Benchmark root directory.

$BP_REPO Local file repository directory.

4.2.2 User files layout

The file structure of the BenchPRO user directory is configured as follows:

./benchpro
— bench
|: config
template
— build
|: config
template
— log
—— resources
L scripts

L— results
L— user.ini

4.2. File Format Reference 23

BenchPRO, Release 1.3

4.2.3 Input Arguments

4.2.4 Global settings

Global settings are defined in the file $8P_HOME /user.ini

4.2.5 Application config files

These config files contain parameters used to populate the application build template file, config files are broken in
sections corresponding to general settings, system modules and configuration parameters.

24 Chapter 4. Advanced Topics

BenchPRO, Release 1.3

Label Required? Description

[general]

code Y Application identifier.

version Y Application version label, accepts
X.X, X-X, or strings like ‘stable’.

system N TACC system identifier, if left blank
will use $TACC_SYSTEM.

build_prefix N Custom build (outside of default
tree).

template N Overwrite default build template
file.

module_use N Path to be added to MOD-
ULEPATH, for using nonstandard
modules.

sched_cfg N Name of nonstandard scheduler con-
fig file to use.

[modules] NOTE: user may add as many custom fields to this section as needed.

compiler Y Module name of compiler, eg: ‘in-
tel/18.0.2° or just ‘intel’ for default.

mpi Y Module name of MPI, eg:
‘impi/18.0.2” or just ‘impi’ for
default.

[config] NOTE: user may add as many fields to this section as needed.

arch N Generates architecture specific op-
timization flags. If left blank will
use system default, set to ‘system’ to
combine with ‘opt_flags’ below

opt_flags N
Used to add additional
optimization flags, eg: ‘-g -ipo’
etc. If arch is not

set, this will be only optimiza-
tion flags used.

build_label N Custom build label, replaces arch
default eg: skylake-xeon. Required
if ‘opt_flags’ is set and ‘arch’ is not

bin_dir N Path to executable within applica-
tion directory, eg: bin, run etc.

exe Y Name of application executable,
used to check compilation was suc-
cessful.

collect_hw_stats N Runs the hardware stats collection
tool after build.

script_additions N Filename in $BP_HOME/templates,

to be added to build script.

4.2. File Format Reference

25

BenchPRO, Release 1.3

4.2.6 Benchmark config file

These config files contain parameters used to populate the benchmark template script. The file structure is:

4.2.7 Directory structure

Directory

Purpose

$BP_HOME/build

config and template files for compiling applications.

$BP_HOME/bench

config and template files for running benchmarks.

$BP_HOME/log

Build, bench and catpure log files.

$BP_HOME/resources

Contains useful content including modulefiles, hardware collection and result validation

scripts.

4.3 Database Structures

4.3.1 Application database

Column Type Modifiers | Storage
code character varying(50) not null extended
version character varying(50) not null extended
system character varying(50) not null extended
compiler character varying(50) not null extended
mpi character varying(50) not null extended
modules character varying(200) not null extended
opt_flags character varying(200) extended
exe_file character varying(50) not null extended
build_prefix | character varying(200) not null extended
task_id character varying(50) not null extended
app_id character varying(50) not null extended
build_label character varying(50) extended
module_use | character varying(100) extended
username character varying(50) not null extended
exec_mode character varying(100) not null extended
bin_dir character varying(50) extended
script character varying(50) extended
stderr character varying(50) not null extended
stdout character varying(50) not null extended
elapsed_time | integer plain

end_time timestamp with time zone plain

submit_time | timestamp with time zone | not null plain

26

Chapter 4. Advanced Topics

BenchPRO, Release 1.3

4.3.2 Results database

Column Type Modifiers | Storage
username character varying(50) not null extended
system character varying(50) not null extended
submit_time timestamp with time zone | not null plain
task_id character varying(50) not null extended
nodes integer not null plain
ranks integer not null plain
threads integer not null plain
dataset character varying(50) not null extended
result numeric(20,3) not null main
result_unit character varying(50) not null extended
resource_path | character varying(100) not null extended
nodelist character varying(1000) not null extended
description character varying(100) not null extended
elapsed_time | integer plain
end_time timestamp with time zone plain
capture_time | timestamp with time zone | not null plain
job_status character varying(100) not null extended
app_id character varying(50) not null extended
gpus integer not null plain
exec_mode character varying(100) not null extended

4.3. Database Structures

27

BenchPRO, Release 1.3

28

Chapter 4. Advanced Topics

CHAPTER
FIVE

BENCHPRO URLS

* Documentation https://benchpro.readthedocs.io/en/latest/
* Main Repo https://github.com/TACC/benchpro
» Database Repo https://github.com/TACC/benchpro-db

29

https://benchpro.readthedocs.io/en/latest/
https://github.com/TACC/benchpro
https://github.com/TACC/benchpro-db

	OVERVIEW
	BenchPRO Basics
	Quick Start
	New User Guide
	Terminology
	Setup BenchPRO
	Compile an Application
	Execute a Benchmark
	Capture Benchmark Result
	Web frontend

	Integrating your Application
	Configuration file
	general
	modules
	config
	files
	overload

	Build template file
	Module template file (optional)
	Example Script

	Integrating your Benchmark
	Benchmark config file
	requirements
	runtime
	config
	result

	Benchmark template file
	Example Script

	Available test cases

	Installing BenchPRO
	Database Installation
	Site Installation

	Advanced Topics
	Useful Features
	Changing settings
	Input list support
	Local build and bench modes
	Benchmarks with no application dependency

	File Format Reference
	Environment Variables
	User files layout
	Input Arguments
	Global settings
	Application config files
	Benchmark config file
	Directory structure

	Database Structures
	Application database
	Results database

	BenchPRO URLs

